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It is shown that the classical concept of an open system does not encompass quantal systems but 
has to be replaced by the non-Boolean notion of an entangled system. Molecular, chemical, or biological 
phenomena can be considered to be reduced to a fundamental theory like quantum mechanics only 
if the fundamental and the phenomenological theories are formally and interpretatively connected, 
and if the classifications used in the empirical sciences are shown to follow from a single set of funda- 
mental dynamical laws. These conditions enforce a non-statistical and ontic interpretation of quantum 
mechanics, hence a non-Boolean calculus of propositions. In this interpretation the notion of a world 
state is well-defined, its Schmidt-decomposition defines a background-dependent model state for 
molecular systems and creates the phenomena we can observe. To any molecular system there is 
associated in an objective way a nonnegative number which we call the integrity. The integrity measures 
the inherent fuzziness of the system concept in a holistic theory, and is used to define recognizable 
molecular patterns. 
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1. Introduction 

The spectacular contr ibut ions of q u a n t u m  mechanics to chemistry are well- 
known. Quite as well, every chemist knows that  there are impor tan t  provinces of  
chemistry in which qua n t um  mechanics  has contr ibuted absolutely nothing. Since 
the search for regularities is the principal concern of all scientific inquiry, classi- 
fication is a mos t  fundamenta l  objective of science. But at first sight, fundamental  
quan tum mechanics  is not  only inefficient for chemical systematics but exhibits 
an entirely counter-intuit ive picture of the molecular  world. There is still a tre- 
mendous  gap between what  we know to be true empirically, and what  we under- 
stand from our  first principles of the theory  of  molecular  matter. Nevertheless, it 
has become fashionable to claim that chemistry (or even biology) in principle can 
be reduced to physics. Such grandi loquent  statements have an extremely meager  
content. In order  to succeed in reducing biology or chemistry to fundamental  
physics, it mus t  be shown that all experimental  findings and all phenomenological  
theories are logical consequences of molecular  quan tum mechanics. Moreover ,  
and very important ly,  we have to require that  the phenomenologica l  theories of 
biology and chemistry are interpretatively connected with molecular  quan tum 
mechanics. That  is, the regulative principles used in the phenomenological  
theories have to follow from the regulative principles adopted  in molecular  
quan tum mechanics.  Regulative principles are of normative nature, they must  be 
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compatible with but are not implied by empirical facts and the mathematical 
formalism of the theory [1]. Nevertheless, they play a crucial role in the theoretical 
reasonings and explanations. If the regulative principles are changed when 
reducing one theory to another, the words used change their meaning, and no 
common vocabularly is available to compare the various theories. Theories that 
are not interpretatively connected are incommensurable. Most experimentalists 
vastly underestimate the immense conceptual difficulties of a reductionistic 
program. At the present time, quantum mechanics of complex systems with a large 
number of degrees of freedom is still in the initial state of its development. Avoiding 
bias and emotion, we have to state honestly that we do not yet know whether 
chemistry is reducible to quantum mechanics or not. 

If we order the empirical sciences, we find that the sciences richer in empirical 
content (e.g. biology) use concepts (e.g. "purpose") not appearing in the more 
fundamental sciences (e.g. physics). Often it is claimed that such new concepts 
cannot even be formulated using only the notions of the more fundamental 
sciences. However, it is typical for non-Boolean theories that a restriction of the 
universe of discourse can lead to the emergence of novel concepts. In order to 
perceive this novelty, some method of pattern recognition has to be used. The 
inadequacy of classical logic for the representation of variables in the area of 
pattern recognition is well-known to the experts; it is directly related to the alleged 
impossibility to discuss notions like "novelty" or "purpose" in terms of a funda- 
mental science. An analysis of the currently available, mathematically well- 
defined methods of pattern recognition reveals the interesting fact that the sta- 
tistical methods of pattern recognition can be rephrased as individual (i.e. non- 
statistical) but non-Boolean classification methods. 

We accept the working hypothesis that molecular quantum mechanics is the 
true fundamental theory of molecular matter, universally valid for molecular 
systems of any complexity 1. In order to fulfill the postulate of the interpretative 
connectability of fundamental and phenomenological theories, we are forced to 
adopt an individual and ontic interpretation of quantum mechanics [1]. Such an 
interpretation is logically consistent and empirically correct if and only if we accept 
a non-Boolean calculus of propositions. That is, we admit that in our universe 
of discourse not every contingent and ontic proposition is either true or false. In 
other words, the set of all potential properties of a system is larger than the set 
of actual properties realized in a particular state of this system. In this sense, 
molecular quantum mechanics is a non-Boolean theory. In such a theory, the Hamil- 
tonian time evolution can cause the emergence of new structures. The recognition 
of such new structures is a non-trivial matter, and requires disentangling of the 
genuine phenomenon from effects due to the surroundings. Adopting a non- 
Boolean point of view, we can unify the methods of quantum mechanics and 
pattern recognition, and thereby also clarify some questions of the reductionism- 
holism issue. 

i By "quantum mechanics" we mean the modern formulation of nonrelativistic quantum me- 
chanics where Neumann's irreducibility postulate of traditional quantum mechanics is replaced by the 
weaker postulate that every physical state vector is eigenvector of all classical observables of the system. 
For a fuller discussion, compare [1]. 



Pattern Recognition in Molecular Quantum Mechanics 129 

The influence of the environment on molecular systems can be quite un- 
expected. Many of the problems discussed in traditional quantum chemistry are 
structurally instable, hence mathematically ill-posed in the sense of Hadamard. 
For such unstable systems, tiny causes can have big effects. A correct inclusion 
of the environment can have far-reaching consequences, and may even allow a 
logically consistent reconciliation of the fundamental principles of quantum 
mechanics with the ad hoc methods of semiempirical quantum chemistry and 
chemical systematics. The failure of non-empirical quantum chemistry to explain 
the richness of chemical systematics is related to the non-robustness of the usual 
models of quantum chemistry. In contrast to the ab initio methods, the semi- 
empirical methods are occasionally more powerful because they accept the 
autochthony of chemistry. As argued convincingly by Hartmann [21, the popular 
attempts to "improve" the invented models of quantum chemistry are due to a 
basic misunderstanding. The role of the semiempirical models is not to simplify 
the calculation but to describe classes of molecules. If we reject semiempirical 
quantum chemistry as ad hoc or logically inconsistent, but nevertheless hope that 
a basic understanding of chemistry can be achieved by reducing it to fundamental 
physicals laws, we have to realize that chemical systematics does not deal with 
particular molecules but with classes of structurally diverse though functionally 
related molecules. I f  we are to understand chemical taxonomy at all, then we have 
to develop a quantum mechanical theory of classes of molecules. Moreover, if we 
aim to recover the familiar constructs of our everday world view from a funda- 
mental physical theory, we need an understanding of our own pattern recognition 
ability. Recent progress both in the formalism and interpretation of nonrelativistic 
quantum mechanics, and in the theory of pattern recognition renders such an 
enterprice feasible. 

These papers, written for the theoretical chemists, are self-contained in that 
they do not require any knowledge of the modern developments of quantum 
mechanics (like algebraic quantum mechanics or quantum logics) nor any ad- 
vanced functional analysis (like the theory of *-algebras) 2. However, we have to 
ask the readers for patience. In order to understand the significance of the main 
results, we have to discuss a few conceptual questions at some length. Unfortuna- 
tely, most text books on quantum mechanics and quantum chemistry are - to put 
it mildly - conceptually rather naive, and do not reflect the substantial progress 
made in the contemporary investigations of the foundations of quantum me- 
chanics. 

The papers of this series are organized in the following way. This first paper is 
devoted to the discussion of the entanglement of molecular systems with the rest 
of the world. In Section 2 the importance of the environment is stressed, and the 
various types of open systems are reviewed. The meaning of state vector in an 
individual, ontic interpretation of quantum mechanics is explained in Section 3, 
where also the concepts of the world state and of the qualities are introduced. In 
Section 4 the Schmidt-decomposition of the world state is derived and used to 
isolate a system form the rest of the world. Section 5 introduces the model concept 
in non-Boolean theories, and relates patterns and reality to a restriction of the 

2 The more mathematical aspects will be developed elsewhere [1, 3, 4]. 
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universe of discourse by disentangling. These concepts are used in Section 6 to 
define molecular systems having a well-defined integrity. The notion of integrity 
is applied in Section 7 to define coequal molecular states and qualities in model 
system. The concluding remarks of the final Section 8 leads us to the second paper 
in which we will show how to describe the environment of a well-isolated molecular 
system in terms of quantum mechanics. In the second paper we will also give 
theoretically well-founded recipes for the construction of molecular models that 
are robust under the influence of the rest of the world. In a third paper we will 
discuss the relation of robust quantal systems and molecular patterns. 

2. The Environment Must Never Be Left out of Consideration 3 

Ultimately, everything in the universe is interconnected and correlated with 
everything else. If we single out a "system", we have divided the universe into two 
parts. All we have not singled out, will be called the environment or the background. 
It is an empirical fact that we never can isolate a system from its environment. In 
molecular systems, this lack of closure can come about, for example, via the 
electromagnetic field associated with electrons and nuclei. In many cases these 
residual interactions seem to be small. However, several of the usual models in 
classical and quantum mechanics are characterized by an extreme instability of 
their motion so that even extremely weak external disturbances can cause tre- 
mendous effects. Such dynamically unstable mathematical models can give 
altogether misleading results unless the model is stabilized by an appropriate 
regularization procedure. As a rule, the robust version gives results qualitatively 
different from that of the original nonregularized model. If this is true, our simple 
models of molecules, and our beautiful ab initio calculations are in danger. 

The structural instability of many models of classical mechanics is well-known. 
Already in 1887 Heinrich Burns discussed the instability of the three-body problem 
of classical astronomy. He proved that in the infinitesimal neighborhood of the 
initial conditions_ of a stable motion there are other initial conditions for which 
the perturbation theory diverges 4. The extreme instability of complex classical 
systems has been used by Emile Borel to explain the macroscopic irreversibility 
as a manifestation of the instabilities in large mechanical systems s. In the same 

3 This statement is taken from Eddington [5]. Fie continues: "It would be idle to develop formulae 
for the behaviour of an a tom in conditions which imply that the res( of the matter of the universe has 
been annihilated ... We cannot more contemplate an atom without a physical universe to put  in than 
we can contemplate a mounta in  without a planet to stand it on". Eddington's deep insight had hardly 
any influence on the modern theory of matter, mainly because his "Fundamenta l  Theory" was prema- 
ture and in most  part  underdeveloped and overambitious. Our  aim is much  more modest:  we do not 
intend to understand the whole world but we propose only to investigate the influence of the background 
on molecular systems. 

4 Compare  also the more recent work by Born [6] and Brillouin [7-9]. 
5 Recall Borel's example [10]: Suppose we construct  a purely mechanical model of an ideal gas 

and assume that we have a relative change of the gravitation potential of 10-10o not under our control. 
Such a change corresponds to an external perturbation due to a shift of 1 cm of a particle of the mass  
1 gr, located on the sirius (distance from our earth: 8,3 �9 1016 m). Then the prediction of classical 
mechanics for the individual positions of the molecules in a macroscopic sample becomes completely 
wrong after 10 -6 sec. 
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spirit, the irreversible behavior and the dissipativity of quantal systems can be 
rationalized by introducing in an ad hoc manner external stochastic forces [11-16]. 
Therefore it is tempting, but fallacious, to assume that quantal systems behave as 
classical systems under the influence of external perturbations. In quantum 
mechanics, the effects of the residual interactions of a system with the rest of the 
world can be much more dramatic than in classical mechanics. 

Physical systems interacting with the outside world are often modelled as 
open systems. A system is called isolated if its properties remain unchanged 
whatever changes may occur in its surroundings. We speak of a closed system if 
all the variables that can influence the system have been taken into account in the 
initial specification [17, 18]. Any other system is called open. We do not possess 
"first principles" that are independent from far-reaching idealizations. Indeed - 
except perhaps cosmology - all fundamental theories refer to closed systems. 
Only by first making open systems closed, we can deduce theoretical propositions 
about open systems. 

The dynamics that results from a projection of the global reversible dynamics 
of the system plus its surroundings to the system is in general no longer Hamil- 
tonian. In this sense, open quantal systems have been extensively studied by 
master-equation methods and projection techniques for elucidating the irrever- 
sible character of many molecular processes. However, these techniques do not 
give all the information that can be obtained from the fundamental Hamiltonian 
equation of motion. For our problems, it is conceptually more transparent, and 
sometimes even technically simpler, not to use a reduced statistical description 
but to discuss the individual behavior in terms of the full world state. 

Customarily, open systems are throught to be realizable as input-output 
systems. Such a restriction of the openess to energetic and material exchanges 
with the environment is based on common sense, engineering experience, and 
classical thinking, but it does by no means exhaust the possible types of non- 
isolated systems in quantum mechanics. In a holistic theory like quantum me- 
chanics, the behavior of the whole cannot be deduced from the most complete 
knowledge of the behavior of its constituting subsystems. That is, even the most 
general system-theoretic approach is not sufficient to encompass individual open 
quantal systems 6. In striking contrast to classical theories (i.e. theories with a 
Boolean propositional calculus), it may be impossible to define an individual 
state for an open quantal system, even if the interaction with the rest of the world 
is extremely weak. As shown by the experimentally well-established Einstein- 
Podolsky-Rosen effect, even systems with practically vanishing interactions can 
be strongly correlated. This much more complex situation reflects the intrinsically 
holistic character of quantum mechanics and necessitates considering open 
quantal systems as entangled systems. 

The wholeness of the quantum mode of description, emphasized by Bohr 
[20, 21], is reflected by the fact that the world is an entangled system in the sense 
of Einstein et al. [22] and Schr6dinger [23]. Generally, when two quantal systems 
have interacted in the past, the combined system is no longer in a product state 
(i.e. its state vector cannot be written as a direct product of state vectors of the 

6 For a survey of the present trends in general system theory, compare e.g. [191. 
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subsystems). In such cases we speak of entangled systems - perhaps the most 
typical characteristic of the quantal world. The correlations existing between such 
insignificantly interacting systems are called Einstein-Podolsky-Rosen corre- 
lations. For example, the electromagnetic field generated by a molecule has to be 
included in the nontrival part of the surroundings of this molecule, so that a 
molecule and its electromagnetic field constitute a single quantal system rather 
than two coupled systems to which state vectors can be assigned. Consequently, 
there is no decomposition of the world state ~ into a direct product of a state 7 j 
describing a molecular system and a state Z describing the rest of the world, i.e. 

~ |  

If we decide to divide the world into small pieces having an individuality, we have 
to realize that therewith we destroy holistic properties. Because we would like 
to understand some aspects of nature without understanding everything, we have 
to learn how to isolate a subsystem from the rest of the world. Before attacking the 
problem of assigning a state vector to a model system (Section 4), we will briefly 
review the meaning of a state vector in quantum mechanics. In the traditional 
interpretations of quantum mechanics it is meaningless to speak of the "state 
vector of the universe". Because we cannot neglect the background describing the 
rest of the world, we need a more general interpretation of quantum mechanics in 
which the notation of a world state is conceptually well-defined. 

3. The State Concept. Qualities of Closed Quantal Systems 

The notation of the state of a system is one of the most fundamental concepts 
for the description of nature. The conceptual definition of a quantal state charac- 
terizes the interpretation adopted. There is a widespread belief that the essence 
of a scientific theory is its mathematical formalism. However, it has to be emphasiz- 
ed that the mathematical formalism of a physical theory is not the whole theory, 
it determines the syntax of the theoretical concepts used but not their semantic 
meaning. Only interpreted mathematical formulae express empirical laws of 
nature. Unfortunately, no general agreement could be reached concerning the 
interpretation of the formalism of quantum mechanics. For our purpose, we can 
neither adopt the Copenhagen interpretation [24, 25] nor the orthodox ensemble 
interpretation [26, 27] since 

(1) both interpretations do not fulfill the postulate of the interpretative 
connectability with the current phenomenological theories, 

(2) both interpretations are meaningless when applied to the entire universe. 
These difficulties are due to the fact that the traditional interpretations of 

quantum mechanics are either epistemic or operational. That is, they deal with 
our knowledge, or our measurements, but not with an objectively existing reality. 
A theory that refers to qualities having a real being is called ontic; traditionally 
all classical physical theories are formulated as ontic theories. An ontic inter- 
pretation of quantum mechanics is often rejected by operationalistic arguments, 
or by claiming logical inconsistencies. Operationalism is an empirically unver- 
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fiable philosophical position which bars propositions that cannot be tested by 
experiments. However, we reject operationalism as a view that confuses meaning 
and measurement. Logical inconsistencies cannot arise if we are prepared to 
accept a non-Boolean propositional calculs 7. 

Fortunately, we are not forced to accept any of the traditional views with 
their grave limitations. Using the results of the modem investigations in the 
foundations of quantum mechanics, it can be shown that it is logically consistent 
and empirically irrefutable to adopt the following ontic interpretation which 
refers to individual systems [1, 4] : 

(1) Conceptually, a state is defined as the set of all ontic contingent proposi- 
tions that are true at a specified time. 

(2) Any closed individual system is always in a well-defined state - whether 
we know this state or not is conceptually irrelevant. 

This state concept refers to an individual system, and applies to quantal 
systems as well as to classical systems. All fundamental classical theories, and all 
non-statistical phenomenological theories are traditionally formulated in ac- 
cordance with this ontic interpretation. But note that in quantum mechanics as 
well as in pattern recognition not all propositions one can make are either true or 
false. The contingent propositions refer to a certain time, they can be true now, 
and false, or senseless another time. That is, in the proposed interpretation the 
lattice of all ontic propositions is in general no longer Boolean. In this sense, 
we say that quantum mechanics and pattern recognition are non-Boolean theories. 
We call a theory classical if the contingent ontic propositions fulfill the laws of 
classical logic, i.e. if they form a Boolean (that is, distributive) lattice. 

Many of the classical statistical theories (like Kolmogorov's probability theory, 
or the methods of statistical pattern recognition) can be rephrased efficiently as 
non-Boolean theories referring to individual systems. On the other hand, the ortho- 
dox ensemble interpretation of quantum mechanics, or the Copenhagen view can be 
derived from the non-Boolean, individual, and ontic interpretations, Nevertheless, 
the choice between statistical and individual interpretations is not entirely a 
matter of taste because some problems can be formulated in the individual 
interpretation only. Alone in an individual interpretation of quantum mechanics 
it makes sense to speak of the state of the whole universe of discourse. We call 
this state the world state. 

In the Hilbert-space formulation of quantum mechanics a state is represented 
by a one-dimensional subspace, called a ray, of an appropriate complex, separable 
Hilbert space, called the state space 9. Any vector generating a ray corresponding 
to a state, is called a state vector. Often, but not always, we normalize state vectors. 
We assume that quantum mechanics is a complete theory and universally valid. 
That is, we postulate 

(1) a state vector characterizes an isolated individual system exhaustively (i.e. 
we exclude hidden variables), 

7 The Copenhagen view is an individual, epistemic, and Boolean interpretation. The orthodox 
ensemble interpretation is statistical, epistemic, and Boolean. An individual, ontic, and Boolean 
interpretation of quantum mechanics is impossible. A logical analysis of the ontic and epistemic 
interpretations of quantum mechanics has been given by Scheibe [28, 291. 
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(2) the time-dependent Schr6dinger equation is valid for any closed system 
(even for the whole world) at any time s . 

These two postulates are empirically unchallenged and compatible with the 
ontic individual interpretation. The various famous paradoxa of quantum me- 
chanics arise only if one introduces in addition a point of view inapplicable to 
non-Boolean theories. 

In the Hilbert-space model of quantum mechanics, the qualities are represented 
by the closed subspaces of the state space 8. We do not exclude superselection 
rules, so that we do not assume that every subspace necessarily also represents a 
quality [1]. A quality f implies the quality g if the subspace (5 Ca associated with 
g is contained in the subspace ~C.~ associated with f, 

f impl iesg  if (5C~. (1) 

Two qualities that imply each other are called equal, hence 

f = g  /ff ~ = ( 5 .  (2) 

A quality that is not implied by another quality is called an atomic quality. Atomic 
qualities are indecomposable, and are represented by one-dimensional subspaces. 
The set of all closed subspaces of a Hilbert space forms a complete, non-Boolean 
lattice under the set-theoretic inclusion C. This lattice admits an orthocomple- 
mentation induced by the inner product. Let ~ be a closed subspace of 8, then 
the orthocomplement ~ of ~ is defined to be the closed subspace containing all 
vectors orthogonal to all members of ~, 

def 
= {Z:X~,(Z[(p)=0 forall qo~}. 

The characteristic property that distinguishes quantal from classical systems 
is the existence of incompatible qualities in quantum mechanics. Two qualities f 
and g with the associated subspaces ~ and (5 are called compatible, written 
f~,g, if the lattice generated by ~, ~a, (5, (5• is Boolean, i.e. 

f,,~g iff ( ~ n ( 5 •  (3) 

This relation can be rephrased in an equivalent but simpler form if we introduce 
the projectors F and G corresponding to the subspaces ~ and (5, respectively 9, 

F = F* --- F 2 , ~ = F ~ ,  
(4) 

G = G *  = G 2 , (5=-- G ~ ,  

8 This postulate contradicts the Copenhagen view as expressed by Bohr [24] and Fock [25]. 
However, it is in accordance with the orthodox interpretation by Newmann [26] and by London and 
Bauer [27]. A consequent non-statistical development of the Neumann-London-Bauer interpretation 
is due to Everett [30] and Wheeler [31]. It is important to acknowledge the fact that the Hamiltonian 
is the generator of the time evolution, hence a self-adjoint operator on the state space, but in general 

not an observable. 
9 A projector is an idempotent and self-adjoint operator acting on the Hilbert space sS. Here we 

have no need to introduce the concept of observables. Conceptually, observables are defined via 
external classification operators. The algebra of all observables equals the Neumann algebra generated 
by the set of all projectors corresponding to all possible qualities of the system. For further details, 
compare [1]. 
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Two qualities f and g are compatible if and only if the associated projectors F 
and G commute, 

f<~g iff F G = G F .  (5) 

The lattice of all qualities of a classical system is Boolean. That is, the distributive 
law 

~ ~(~ u 15)= (~ ~ ~ ) w ( ~  15) 
(6) 

~u(~c~15) = (r ~)~(ew 15) 

holds for the subspaces ~, 5, t5 associated with every triple {e, f ,  g} of qualities 
of a classical system. Equivalently, in a classical system the commutative law 

FG = GF (7) 

holds for the projectors F, G associated with every pair {f,  g} of qualities. 
Let ~P be a state vector belonging to the subspace ~ C ~ ,  

~uz~, or equivalently F~U= ~ ,  

where F is the projector onto 5, ~ = F.~. Then the ontic interpretation implies 
that the system in the state t/, has the quality f in a realistic and objective sense. 
It would be artificial not to attribute a certain degree of '~C-ness" to a state vector 
that only "almost" belongs to the subspace 5. The distance d(~, 5) of a vector 
from a subspace ~ is defined by (compare [35], Section 1.6) 

clef 
d(~U, 5 ) =  Jug 11~-0511. 

The uniqueness theorem on orthogonal projections in a Hilbert space implies that 
this distance is given by 

dW, 5) = [IF~7'I!, 

where F ~ =  1 -  F and ~=F.~ .  The tangent of the angle (p(T, 5)between a vector 
7 ~ and a subspace is defined by 

d(~', 5) _ IIF'~ell 
(8a) 

d(7 ~,5 • ) IIFTJt �9 
tan ~pW, 5) 

Accordingly, we have 

and 

I!F~II 2 <~lFl~u> 
c~176 5)= IItull 2 <~1~> 

I<~1~>1 ~ 
= sup  (8b) 

IIF• <~lf~l~'> (8c) sin2~o( T, 5)--  ii~gll2 -- ii~lj2 

The square of the cosine of the angle ~o(T, 5) between T and ~ is an appropriate 
measure of the "f-ness"  associated to the individual state t/, That is, if 
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cos 2 ~0(7 ~, 3 ) ~  1, the state vector 7 j behaves similarly as the vector 7~r%fFgJs3 
having the quality f .  

In harmony with this concept of "f -ness" ,  we measure the proximity of two 
qualities by the angle between the corresponding subspaces. We define the angle 
q)((5, 3) between two closed subspaces of the same dimension by 

cos ~o(ff~, 3)d~ inf cos q0(7 j, 3) 
7z~ 15 

K T ' I ~ ) I  
= inf sup , (9a) 

so that 

[IF• I I f •  
sin (p((5, 3 ) =  sup --=sup liF• 

For  two projectors F, G of the same rank, we have (compare [36], Section I-6.8) 

IIFmGll = IIG• = I I G - F l l  = IIF-Gll, 
so that 

sin q0(ffi, 3 ) =  JIG- Ell (9b) 

(compare also [35], Section III-39). We say that two qualities f and g are similar 
if the corresponding subspaces 3 and (5 have the same dimension, and if the angle 
~0(3, qi) between 3 and ffi is small. A natural measure of what has to be considered 
as small is given by the integrity I, introduced in Section 6. 

4. The Schmidt-Decomposition of the World State 

A system which is neither interacting nor entangled with another system will 
be called universe 1~ In the framework of the individual, ontic, non-Boolean 
interpretation of quantum mechanics it makes sense to speak about the state of 
the entire universe. Let ~w be the state space of the universe of discourse, called 
the world-state space; we assume that -~w is a separable Hilbert space and includes 
everything that is of importance for our discussion. In particular, we may include 
the electromagnetic radiation field which also interacts with the macroscopic 
objects of our world. Because we include everything of interest to us, our universe 
of discourse represents an isolated system in a well-defined state. At a fixed time, 
this state can be represented by a normalized vector ~e~w 11. We call �9 the 
world-state vector. We never are interested in the whole world but only in a part  
of the world which we call the system S. A system is characterized by its non- 
contingent (i.e. time-independent) properties. In the Hilbert-space formulation 

lo In our discussions, "world" or "universe" always means the universe of discourse, including 
all relevant observers and measuring apparatus. Genuinely relativistic problems are excluded in our 
discussion, hence "universe" never means the cosmological universe. 

11 If the universe of discourse contains infinitely many degrees of freedom (e.g. if the radiation 
field is included), some care is required. The world-state vector q~ is assumed to be an element of a 
superselection sector of the full state space -~w. That is, if the algebra of all observables is reducible, we 
require that all physical state vectors (including the world-state vector q~) are eigenstates of all classical 
observables. Compare also [1]. 
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of  q u a n t u m  mechanics ,  a system is specified by  a pa r t i cu la r  t enso r -p roduc t  
decompos i t i on  of the wor ld - s t a t e  space ~w, say ~2 

~w=SS| 0o) 

Thereby ,  ~ is the state space of the system under  discussion,  and  SS~ is the state 
space of  the env i ronmen t  of  this system. The  wor ld -s ta te  vec tor  �9 can be wri t ten 
in very m a n y  different ways in a form a d a p t e d  to this t enso r -p roduc t  d e c o m p o -  
sition, say as 

= ~ ~ c~W~| 

with complex  numbers  C~g, and  

Fo r tuna t e ly ,  there  exists a un ique  canonica l  form of such an  expans ion  in which 
the expans ion  coefficients Cjk are  d iagonal ,  and  bo th  the vectors  7~j and  Zk form 
an o r t hogona l  system. Accord ing  to a theorem due to Schmid t  [32], any  no rma l i -  
zed vec tor  ~eSS| can be represen ted  in the form 

II~ll 2 =~j~o I~jl 2 = 1, 

where  the o r t h o n o r m a l i z e d  vectors  ~j ,  ~ j  

"~j ~ e , ( l l a )  

(llb) 

(1~c) 

are eigenvectors ,  and  the complex  numbers  zj  are eigenvalues of the fol lowing 
coupled  eigenvalue problem13 : 

( ~ [ ~ } ~  = z j ~ j ,  (1 ld)  

( ~ , i tq)}~e = z j ~ P  j . (1 le) 

12 Any countably infinite-dimensional Hilbert space is isomorphic to arbitrary finite tensor 
products of countably infinite-dimensional Hilbert spaces. Hence, without additional information, 
it makes no sense to ask for a decomposition of a given state space into a tensor product of state spaces. 
The different possible ways to choose the state space .~ mirror the plurality of ways seeing phenomena. 
The general problem of representing the state space as a meaningful tensor product is a highly im- 
portant problem of molecular pattern recognition. For the present, we assume that the tensor product 
decomposition (10) is contextually given, and concretely defined, say via a representation of the Galilei 
group. 

xa Of course, in Schmidt's paper of 1907 Hilbert spaces are not mentioned but realized as ~2- 
spaces of equivalence classes of Lebesgue square integrable, complex-valued functions in the n-di- 
mensional Euclidean space 9~". Let ~ = ~2(9tP), ~e = !~2(~flq), S3w = ~22(~RP • 9tq), then we get the integral 
equations actually used by Schmidt : 

~ ~P*(x)ga(x, y) dx = zj~j(y), year q , 

~,~q .E*(y)q~(x, y) d y = x j T  j(x) , x e ~  p , 

where ~e~2(91P x 9~ q) plays the role of an unsymmetrical kernel. 
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In the following, we always choose the notion such that 

l>[xo12>lzl12> ... > 0 .  ( 1 1 f )  

We call this canonical expansion the Schmidt-decomposition of the world state ~0 
relative to the system S. 

The Schmidt-decomposition has a remarkable optimality property. For fixed 
natural numbers m and n, 

ln f ] l~-  ~)=o }-',k= 0 Cjk~S| ][~-- ~2= 0 Zj~P)| a=  1--~2=o [xjl 2 , (12) 

where n=min(m, m3 and the infimum has to be taken over all complex numbers 
Cjk, and all vectors ~jeS,  ~jeS~. Accordingly, the best possible approximation 
(in the Hilbert space norm) of the world-state vector ~b by a product state ~o 
(i.e. n = 1) is given by the first term of the Schmidt-decomposition, 

~o = ~o |  
with 

I [r  q~ol[ 2 = 1 --IZol 2 , 

I<~1~o>12 :lZo[2 ~ 1. 

(13) 

(14) 

(15) 

The statement that no system can be isolated from its surroundings means that 
]Xo] 2 = 1 is impossible. If [Xol 2 ~ 1, then we call q~o = ~o|  the dominant Schmidt 
state. 

When we speak of a closed system, we have already assumed that the system 
is disentangled from the rest of the world. That is, we have ignored certain aspects 
and tacitly replaced the world state space vector ~ by a product state ~ |  where 
7 ~ is a vector of the state space that defines the system, and ~ is a background 
state describing the rest of the world. The best possible choice for such a model 
state 7J| is the dominant Schmidt state ~b 0 = ~o |  of the world state vector ~. 
Accordingly, we define a molecular model by a tensor product decomposition of the 
world-state space together with the dominant Schmidt state cb o which serves as a 
model state. An idealization of this type is always made in every application of 
quantum mechanics, the proposed definition gives the best possible separation 
of the molecular system from its surroundings. 

Because the model state ~b 0 = k~o| o is a product state, we lose nothing when 
we restrict our discussion to the molecular state To. Such a notational simplifica- 
tion is common practice. Nevertheless, the replacement of 7Jo| by 7Jo does 
not eliminate the effects of the surroundings, the state vector 7J0 is in an essential 
way background dependent. That is, we cannot expect that by restricting the dis- 
cussion to the subsystem defined by the state space $ we are able to evaluate a 
reasonable approximation to the model-state vector ~o- The model state 7~o is 
defined via the Schmidt-decomposition of the world-state, hence it is a relational 
concept which refers to a system adapted to its environment. 

In the individual, ontic interpretation the world-vector and its dominant 
Schmidt state are conceptually well-defined but, of course, lack direct operational 
meaning�9 We never know the world-state. Nevertheless, it is possible to get ap- 
proximations for the dominant Schmidt state ~o because we have reasonable 
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ideas what the interactions of a molecular system with its surroundings are. As 
we will discuss in the second paper, the quasi-classical nature of our macroscopic 
world implies that the vector EM approximating the state vector of the surroundings 
of a well-isolated molecular system has a surprisingly simple structure. Hence we 
can work out the time evolution ~bM(0)--+~bM(t ) of a model with a product vector 

~bM(O) d--el tFM(~M--+~OM(t) , t > O. 

In general, ~g(t) will no longer be a product state but it may happen that the 
molecular part of the dominant Schmidt state of ~bM(t) does not depend in an 
essential way on the interactions with the surroundings. In such cases we say the 
molecular state T M is robust, and we can consider ~M as a useful approximation 
for the true but unknown model state ~o. In these fortunate situations we can 
altogether neglect the influence of the surroundings, and hence recover the 
traditional methods of molecular quantum mechanics. In any other case the 
molecular model state gig is structurally instable, and does not represent an 
actual situation. Regularization methods for such unstable situations will be 
discussed in later papers [3, 33]. 

Preliminary Example 
Consider the molecule H 2 in the Born-Oppenheimer approximation. Let ~(R) 

be the electronic ground state as a function of the internuclear distance R, and 
let Req be the equilibrium distance defined by the minimum of the electronic 
energy. Empirically we know that t/-t(Req ) is an acceptable approximation, so 
that we feel sure that ~U(Req)| is a reasonable approximation for the world 
state ~b. The very same methods of traditional quantum chemistry that are em- 
pirically successful for the evaluation of the ground state of the hydrogen molecule 
give a curious result when applied for the case R-+ c~. We get 

lim t['t(R) = 2-1 /2  {(,01 @ (,02 - (p2 @ (p 1 }, 
R~oo 

where ~o, and ~o 2 are two orthogonal molecular orbitals. However, if we have one 
proton on the earth and another on the moon, then we know empirically that 
the realized lowest energy state of this 2-nuclei-2-electron problem is one hydrogen 
atom on the earth and one hydrogen atom on the moon. That is, the appropriate 
approximate decomposition of the world state �9 is either of the type 

(1) ~ ~_ @ 1 (~) (/92 (~)..~ 12 , 

or of the type 

(2) (P ~ (112 @ (~01 @~..,~21 , 

but not a superposition of the type 

(3) ~ 2 2 - 1 / 2  {(pl @@2 - q)2 @(Pl}  @ E , 
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as suggested by the methods of traditional quantum chemistry. We will show at 
another place [3, 33] that for R~oo  the state (3) is structurally instable and 
decomposes under the influence of the environment into the robust states (1) or (2). 

5. Models and Phenomena 

If we replace the pragmatic approach to molecular quantum mechanics by 
the universally valid quantum mechanics in its ontic interpretation, we are 
confronted with problems and possibilities unknown in the traditional approach. 
Adopting the primacy of quantum mechanics, we have not only the burden but 
also the chance to derive the classical behavior of some systems and the existence 
of patterns and phenomena in our world. 

In a holistic theory, notions like patterns and phenomena have no a priori 
meaning. Pattern recognition turns out to be the same as pattern creation, so that 
the distinction between discovery and invention breaks down. Pattern recognition 
is a map of the non-Boolean world into a Boolean description, whereby different 
recognition criteria may lead to incommensurable but equally legitimate de- 
scriptions. The selection of a particular criterion creates some patterns but makes 
it impossible to ask complementary questions. However, a priori we have no rules 
how to select a pattern recognition criterion. Nevertheless, the phenomena created 
by a given pattern recognition process can be reproduced in the universally valid 
quantum mechanics by a particular, theoretically well-founded model tailored 
to this pattern recognition criterion. 

Ignorance, particularization, and artificial isolation are intrinsic in the scientific 
method. The erasing of not directly relevant information is the conditio sine qua non 
not only for pattern recognition but for any scientific inquiry. Any pattern recogni- 
tion method singles out some directly relevant aspects, and suppresses unessential 
features; it can be characterized by the specification of the relevant variables 
together with a threshold level. The threshold level measures the amount of 
irrelevant information thrown away. The specification of the relevant observables 
can be used (for example via a representation of the Galilei group) to define the 
Hilbert space .~ of the system, and therewith the tensor-product decomposition 
of the world-state space -~w. As we will discuss in detail in a later paper, the thres- 
hold level e is related to the eigenvalue Zo of the dominant Schmidt state 4 o of 
this tensor-product decomposition by e = 1 -[z0] 2. The operation that corresponds 
to the pattern recognition process is the replacement of the world state 4 by the 
model state 4o. The operation 4-- ,4 0 is nonlinear, it destroys some holistic 
properties by dismissing the (always existing!) Einstein-Podolsky-Rosen type 
correlations between the system S and its surroundings, and creates new patterns. 
The world state 4 is patternless; only in the model state 4 o there are knowable 
patterns and actions. Both, in quantum mechanics and in pattern recognition, 
phenomena exist only because of abstractions. The purpose of a theoretical model 
is to isolate particular qualities and phenomena. To summarize: disentangling a 
system from its surroundings creates new phenomena which can be discovered by a 
pattern recognition method that rejects the Einstein-Podolsky-Rosen correlations 
between the system and its surroundings as irrelevant. 
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It would be somewhat  naive to presume that there are real events but that 
theories describe idealized systems only. Reality is a very abstract construct, it 
is known to us only through some pattern recognition mechanism. What  we call 
a real event is the result of a pattern recognition process in our brain 14. Pattern 
recognition is a highly developed faculty of mankind, not necessarily of subjective 
nature even though depending on our historical origin and biological evolution. 
We decipher the outside world on the basis of recognition criteria derived from 
our own long biological evolution. The evolution of the faculty to do some 
categorization must have been a crucial component  for the survival of living 
beings. These pattern recognition processes create the reality witnessed by animals 
and men by rejecting irrelevant informations. What  passes as irrelevant is, how- 
ever, neither determined by quantum mechanics nor by subjective beliefs, but by 
the historical biological evolution. Accordingly, human pattern recognition is 
not a purely logical process; the extra logical factor is given by our own history. 
A knowledge of the criteria man uses to recognize patterns is imperative for any 
practical application of universally valid quantum mechanics, 

6. The Model Reference-State and Its Integrity 

In order to isolate a phenomenon, we have to choose a Hilbert-space de- 
composition of the world-state space ~w, say 

.~w =.~| . (16) 

The model reference-state ~ o ~  is then defined by the dominant  Schmidt state 
go = 7Jo| of the Schmidt decomposit ion (11) of the world state q). The absolute 
square of the eigenvalue Zo of the dominant  Schmidt state is a measure for the 
wholeness of the system considered; therefore we call Ix0[ z the integrity I of the 
model 

1 %  f )xol ~ = I ( ~ , I ~ o ) 1  z , (17)  

0 < I ~ < 1 .  (18) 

The only purely quantal system with integrity one is the whole world. A system 
with integrity smaller than one is entangled with its environment. Such an en- 
tanglement reflects the superposition principle, it is typical for quantum mechanics 
and does not occur in classical theories. 

14 Example: Does the moon exist in reality as an individual entity? We are inclined to give an 
affirmative answer. However, the moon is composed of elementary particles with an inseparable 
associated electromagnetic radiation field. 

Question: Does this electromagnetic field belong to the "real moon"? Note that there exists no 
non-arbitrary decomposition of the electromagnetic field into a part associated with the moon, a part 
associated with the earth, etc. 

Way out: Ignore this sophistry which is not relevant to most practical problems, hence introduce 
an "ideal moon" not having an intrinsic radiation field. 

Moral: Unprejudiced facts, arid observations without data processing do not exist. Individual 
entities exist only as patterns created by idealizations. 
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The concept of integrity is called for in the individual interpretation of quantum 
mechanics. Conceptually, the integrity is a measure of the inherent fuzziness of 
the system concept in a holistic theory, but it does not concern missing information 
and bears no resemblance to the entropy concept of information theory. To any 
system whatsoever there is associated in an objective way an inherent integrity. 
Nevertheless, in a statistical interpretation the quantity - I n  I can be used as an 
entropy. In a statistical ensemble interpretation of quantum mechanics, one 
would say that the system S is not in a pure state but has to be described by a 
non-idempotent density operator D, generated by the Schmidt-decomposition 
(11) of the world state-vector cb (compare e.g. Feynman [34], p. 42), 

D a=-ef ~ = 0 I ; ~ j [ 2 1 t l l j ) ( ~ j [  �9 (19) 

This reduced density operator is obtained by averaging over all degrees of freedom 
of the environment, and gives a partial description of the world state ~b. The 
degree of mixture of the density operator D can be measured, for example, by a 
R6nyi entropy H~ of order ~, defined by the nonincreasing function H~ of ct 

def 
H= = (1 - ct)- lln{tr(D")}, 0 < e < o o ,  e r  (20) 

H~<<_H~ /f c~>/~. (21) 

The Shannon entropy H a is given by the limit 

while Hoo is defined by 

H a = l im  H= = - tr {D In D }  
a-+l 

(22) 

def . 
H~ = hm H~= -lnllDII = - l n  I .  (23) 

The norm of D equals the largest eigenvalue Igol 2 of the reduced density operator 
(19), so that H~> - l n  I, or 

I > exp ( -  H~), 0 < ~ < oo. (24) 

In the statistical interpretation, the entropies H~, 0 < ~< 0% are measures of the 
chaoticness of the ensemble described by the density operator D, and reflect our 
ignorance about the individual members in the ensemble. This view allows a 
Boolean but only partial description. We prefer the individual non-Boolean 
interpretation because it permits an ontic description, and allows for a transparent 
discussion of the holistic nature of our world. Note that there is no contradiction 
between these two views, and that the uninterpreted mathematical formalism is 
the same. However, in the individual interpretation density operators are rejected 
as conceptual basic elements but appear only as convenient but secondary mathe- 
matical tools. In the individual interpretation, all states are exclusively described 
by rays or the associated state vectors. 

The usefulness of a tensor-product decomposition (16) critically depends on 
the value of the integrity of the associated dominant Schmidt state. Though our 
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developments do not depend on the value of the integrity, the system concept is 
useful only if the integrity is sufficiently close to one, i.e. if 

I ~  1. (25) 

If the condition is violated, then the tensor product decomposition used is not 
sensible and has to be replaced by a more appropriate one. To find a suitable 
tensor-product decomposition is not an easy task because in a non-Boolean 
theory it is not true that there exists a sequence of models that approximate more 
and more phenomena in an increasingly better way. Any empirical phenomenon 
has its clearest appearance in a particular model; adopting new models, we 
isolate new phenomena. Both, extending and reducing an optimal state space 
impairs the manifestation of the phenomenon we are looking for. 

Example 

Consider a (2+ 1)-particle system like He or H~- with the center-of-mass 
motion separated, so that we have a problem with 6 degrees of freedom. A brute- 
force solution of the Schr6dinger equation in the state space ~2(916) does not 
reveal any of the properties by which a chemist classifies He as an atom and H + as 
a diatomic molecule. Of course, in the ground state both systems have spherical 
symmetry, hence all properties are isotropic. Only if we decide for a particular 
tensor-product decomposition of the state space ~3, say as 

(1) .~ = ~2(~3)(~)~2(~3) ,  

where both ~/-spaces are defined by a projective representation of the Galilei 
group with respect to the two identical particles, we get the usual description of 
the helium atom as a system consisting of two interacting electrons in an external 
Coulomb potential. If we decide for the different decomposition 

where ~ is the representing space of the distinguished particle (i.e. the electron 
in H~-, or the nucleus in He), and !2~ is related to rotational and vibrational 
degrees of freedom, then we get the Born-Oppenheimer-type description of H~- 
as a diatomic molecule, characterized by an internuclear distance, a moment of 
inertia, etc. These features of the traditional description are created by a particular 
tensor-product decomposition of the state space, they are not inherent in the 
(2+1)-particle problem. It is not sensible to describe the system H + according 
to the decomposition (1), or the system He according to the decomposition (2) 
because the associated integrities are too small. Needless to say, expectation 
values do not depend on a particular choice of the state space, we may choose 
t22(916), or the decomposition (1), or (2). Self-assured operationalists never should 
use (1) or (2), but stick to numbers and eliminate patterns. 

Recall that in this paper we consider the world state at a fixed time only. If 
we relax this condition, the integrity I becomes a function of time t, t-+I(t). Stable 
systems are characterized by a relation of the type 

stable systems: I ( t )>I  o for all t ,  (26) 
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where Io is a real number close to 1. If the integrity is a nonincreasing function of 
t with I(oo)= 0, we have an entangling system representing a decay, 

f I(t~l<I(tl) for t2> q ,  
decay: ~ ~li(_oo), . ,1,  I ( + o o ) ~ 0 .  

(27) 

The most interesting case is a system with increasing integrity. If the integrity 
increases from a low value to a final value near one, we have a disentanglin9 system 
describing the emergence of novelty 

[l(tz)>I(tl) for t2>t i,  
emergence of novelty: { t 1 ( -  oo)~0,  I (+  oo)~ 1. (28) 

Disentangling processes are related to the so-called "measurement process in 
quantum mechanics", and - more realistically and more importantly - to mo- 
lecular evolution processes in the sense of bioevolution; they will be discussed in 
detail elsewhere. 

7. Qualities of Model Systems 

To speak of a physical system means to separate one aspect in spite of the 
inseparability of the world. Such an infringement is inevitable but requires a 
careful analysis in order to avoid inconsistencies. Restricting our attention to a 
particular dominant Schmidt-state, we determine the phenomena that can be 
recognized in a system S. For example, i fF  is a non-trivial projector with 

F~b0 = #o ,  

then we say that the model system in the state 4~0 has the property f associated 
with the subspace ~ = F~w. Due to the holistic nature of quantum mechanics we 
cannot expect that F~bo=~o implies F~b=~ because �9 describes the whole 
world but ~o refers to a system isolated by ignoring the Einstein-Podolsky-Rosen 
correlation between the system and its environment. The fact that a larger system 
is not necessarily richer in recognizable patterns is typical for non-Boolean 
theories like quantum mechanics. Often, a restriction of the state space leads to 
the emergence of new patterns. Yet, the patterns of a system disentangled from 
the world state do not arise like bolts from the blue, they preexist in an approxi- 
mate sense in the world prior to its decomposition into parts. Indeed, the Schmidt- 
decomposition of the world state 

r  with ( r 1 6 2  

implies for every projector F fulfilling F4~ o = ~o the inequality 

hence 

(~1 V[(/') ~ IXo[Z(~o[F[~o> = I ,  (29) 

(30) 
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where I is the integrity of the dominant Schmidt-state ~b o. If the subsystem has 
near optimal integrity, I ~ 1 then F ~  ~ ~, so that we can consider the quality f 
as preexisting in the world state ~. 

In the terminology introduced in the context of Eq. (8), we can rephrase Eq. 
(29) by saying that the relation F~b o = go implies that the f-ness of the world state 
is not smaller than the integrity of the dominant Schmidt-state ~b o. Every vector (p 
whose square of the cosine of the angle between (p and ~0 is larger than the in- 
tegrity I enjoys the same property, so that it is useful to associate with the dominant 
Schmidt-state 4~o the following class g}v of world vectors (p 

wdeef I(qol4o)l e 
< ii ,ll=ll oll  =>i}. (31) 

Since F~bo = �9 o, IIF~II ~ 1, and limbo [I = 1 implies 

it follows that 

I<F~l~o) 12 >[<F~[~o)12 =i, 

F~be~} v for every projector F with Fq~ o = ~b o . (32) 

Obviously the state vector CrpFde----fFc]) has the quality f ,  so that it is justifiable to 
say that the world state �9 has the quality f relative to the class g}v if F~eg} v. 

A product vector of the type ~o = g*| o is in the class g}v if and only if ~g is in 
the class 

I(~el~eo)L 2 
~%f{~e= ~e~, ,l~p/iNl,~e0,12 >I}. (33) 

The class ~ consists of all those vectors that are near to the model reference state 
~0, whereby the integrity I acts as a natural measure for the nearness. The inherent 
fuzziness of the system concept does not warrant to consider the dominant 
Schmidt-state ~go as the only proper model state, any vector from the class ~,  can 
serve equally well as a state vector for the disentangled system. For  that reason 
we call ~ the class of all state vectors coequal to the reference state vector 7%. 
For  a background-dependent system, the definition of a quality as given in Sec- 
tion 3 for a strictly closed system has to be replaced by a more liberal one. We 
define: 

A system characterized by a model reference state ~o of 
integrity I is said to have the quality f if the corresponding 
projector F has an eigenvector coequal to ~o, i.e. if 

F ~ = 7  ~ for at least one ~g~g, 

(34) 
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The existence of a normalized vector ~eE~ with F ~ =  ku implies that 
l<~l~o)12>__I, or 

I ~ IffF~l ~o)12 = I<~lF~o)l  2 ~ ('/Jl ~ ) ~ F ~ o l e ~ o )  

= ( F ~ o l ~ o ) -  
I (F~o[~o) l  2 

NF~oll211~oli 2'  

so that F~0r On the other hand, ira projector F fulfills F~UoeEI, then the vector 
clef 

~u F = Ft/'o has the property FkU F = W E and k~FeE ~, so that the system is in a state 
having the quality f .  Hence, a system with the model reference state ~o of integrity 
I has the property f if and only if F~o is a vector coequal to ~o, or equivalently, 

S has the quality f iff <~U0lFt/'o>>I. (35) 

8. Concluding Remarks 

General mathematical system theory or the theory of automata and sequential 
machines are Boolean and do not encompass quantal systems. Quantum 
mechanics is a holistic theory, enforcing a radically different view on the notion 
of a system. Our ability to describe the world is limited by the possibilities to 
isolate objects. Inevitably, the state of a well-isolated quantal system is background 
dependent, and can - as a rule - not be evaluated by the kinematics and the 
dynamics of the isolated system alone. The non-Boolean system concept is 
displayed as nonintrinsic, but the integrity is a structural property of the chosen 
model. A model is always a partial "Booleanization" of the non-Boolean world, 
or more precisely: a model is created by ignoring the Einstein-Podolsky-Rosen 
correlations between system and environment. A model creates and isolates 
phenomena important to us. If we consider something else to be important, we 
need a different model. The non-Boolean structure of the world implies that there 
exists no all-embracing model. One man's reality is another man's "stuff as dreams 
are made of''. 

Can a practically useful theory be established within the proposed framework? 
It might be thought, at first sight, that our definition of the model reference state 
is useless because we do not know the world state. Two remarks are appropriate. 
First, conceptually sound but nonoperational definitions of the basic entities of 
a theory do not render the theory nonoperational. The universally valid quantum 
mechanics allows us to make qualitative as well as quantitative predictions beyond 
reach of the traditional pragmatic quantum mechanics. Second, we can embed a 
molecular system in a suitable environment, and construct a molecular state 
adapted to this environment. Such a route requires a knowledge of the structure 
of the environment. As we will show in the second paper, this problem can be 
solved. 
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